
INFORMATION RESOURCE CENTER
USCG Training Center Petaluma

Introduction to
Active Server

Pages

ii

I N F O R M A T I O N R E S O U R C E C E N T E R

Introduction to Active Server Pages

Information Resource Center
USCG Training Center Petaluma

599 Tomales Road
Petaluma, CA 94952

Telephone (707) 765-7523

i ii i

Table of ContentsTable of Contents
Overview of ASP 1
What is ASP? 1

How ASP Works 1

Built-in Objects 2
Creating ASP Pages 6

Inserting script tags 6

Scripting Conventions 9
ASP Objects 11

Introduction 11

Working with Objects 11

Response Object 12

Request Object 12
Creating a Form Handler 14
Project Overview 14

Starting the Data Collection 16

Creating the Initial Form Handler 20
Appendix A 30

enlistedform.asp 30

officerform.asp 31

enlistedprocessor.asp 32

officerprocess.asp 33

enlistedprocess2.asp 34

officerprocess2.asp 36

Appendix B 38
ASP Object Reference 38

11

Overview of ASP

What is ASP?
ASP is a server-side scripting environment that can be used to create dynamic Web pages or web
based applications. ASP pages are files that contain HTML tags, text, and server side scripts and
end with the .asp extension. Scripts in an ASP page can access built-in ASP objects or external
components. The external components come in the form of ActiveX components that perform
many tasks such as connecting to a database.

ASP allows you can add interactive content to your Web pages or build entire Web applications
that use HTML pages as the user interface.

How ASP Works
ASP technology is entirely server based meaning that the server processes all the script commands.
When a user sends a request for a an ASP page, the web server executes the script code prior to
sending the page back to the browser. The result is that the browser only gets a normal web page
that is a result of the scripts that were executed. The diagram below illustrates how this works.

This illustration is an overly simplified example of how ASP works. In actuality the process is
more complicated. Right now it is not necessary to understand all the intricacies of ASP and how

Section

1

or

ASP
Browser Server

 22

it works with the web server, you will learn more about it as you create more robust web
applications. For now just think of ASP as a web server add-on that processes the page before it is
sent to the browser.

Internet Information Server
Internet Information Server (IIS) is Microsoft’s web server software for Windows NT Servers.
ASP is one of the many additions to the Internet Information Server. There are many other server
additions that add a variety of functionality to IIS. This tutorial does not discuss other
components or how they are integrated into IIS. Rather this tutorial deals only with how to create
ASP pages. However, some general information on components and objects will be provided.

Components
Components are separate, small pieces of software that are developed separately, but can be
integrated into an ‘application’. Think of how a PC is put together- numerous components from
numerous manufacturers that are brought together to form a computer. That’s generally how IIS
is put together. There are many components that are added to IIS to make a robust web server.
ASP pages can directly access those components to perform specific functions.

For example there is a component that allows a web page to retrieve, change, or add records in a
database. Components are called by scripts in the ASP page. IIS manages the communication
between the web browser and the database through the ASP component and the database
component.

Objects
Because ASP is a scripting environment it really only knows how to deal with Objects. (Objects
are things you can manipulate in a scripting environment.) Using scripting commands you can
create objects for each component you wish to access. Objects are created instances of the
component. Objects are represented by properties, methods, and events. Fortunately creating objects
to access components is rather simple. Additionally ASP has six built in objects that can be
accessed at anytime. These objects will be discussed later.

Web Applications
ASP pages are commonly referred to as web applications. Applications are really just a collection
of ASP pages and any components they use that are grouped together to accomplish a specific
task. In this class we will not be creating any large scale applications, but the term will be used to
refer to the pages created in this tutorial. Just think of applications as groups of ASP pages that
accomplish some task.

Built-in Objects
As mentioned earlier, ASP has six built in objects that you can access and use in your pages. These
objects allow you to extend the power of scripts and add functionality to your ASP pages. This
tutorial will not cover all the objects, but will use the Response and Request objects as examples of

 33

how to access and use objects. A reference of these six objects and their associated properties,
events, methods and collection is included in Appendix B. You can also find a reference for the
objects at http://cgweb.tcpet.uscg.mil/iishelp/iis/htm/asp/intr1orp.htm.

Request
The Request object contains all the data that is include in an HTTP request for a page. This
includes any HTTP headers and form data. The ASP pages you will create in later exercises will
use the Request object to access form data.

Response
The Response object contains the data that is sent from the web server to the browser. The
Response object is most commonly used to output data to a page before it is sent to the browser.

Server
The Server object is used to access utilities on the server. The most common task is to set the
timeout property so that scripts with errors don’t get stuck in infinite loops and overload the
server.

Application
The Application object is used to store and retrieve data that is shared among the users of an ASP
application.

Session
The Session object is used to store and retrieve data pertaining to the current user session.
Sessions are activated when a user request a page and persist for a specified amount of time or
until the user closes the browser.

ObjectContext
The ObjectContext object is used to control ASP transactions that are managed by the Microsoft
Transaction Server (MTS). MTS is a component of IIS much like ASP is a component of IIS.

Getting Help
A Scripter’s Reference for VBScript is available online at http://cgweb.tcpet.uscg.mil/iishelp. To
locate the reference follow these steps.

1. Go to the web site
2. Once at the web site, on the left side of the page click the plus (+) sign next to

Internet Information Server. The list will expand to show more options.
3. Click the plus (+) sign next to Scripter’s Reference. Another list of options will

open. You will see the VBScript Language Reference.
From there you can click VBScript Language Reference or click the plus (+) sign for more
options.

 44

The language reference does not provide any tutorials or instructional content, it simply provides
the syntax for various operators, objects, properties and methods.

An online tutorial for ASP is also available on the IISHelp site. To access the tutorial follow steps
1-2 above. Then click the plus (+) sign next to Web Applications. You will see the ASP
Tutorial in the list that appears.

Getting Started
In order view the ASP pages correctly the pages must reside on a web server. A folder on the web
server has been set up for your use during this class. In order to view your pages you will need to
connect to the server and save all your work to the server. Follow these steps to connect to the
server:

1. Right Click My Computer.
2. From the pop-up menu select Map Network Drive . The Map Network Drive

window will open.
3. In the Drive box select X:\ NOTE: You must use X:\
4. In the path box type \\iis_tp\practicewebs
5. Click the box next to Reconnect at Logon. The box will be checked.

Your screen should look exactly like the example below.

 55

6. Click OK. The drive will be connected. A window for the drive should open.

Viewing Your Pages
Once you have created pages you will view them live from the server using Internet Explorer. The
URL for your pages will be:

http://cgweb.tcpet.uscg.mil/practicewebs/username/file.asp

where username is your username and file.asp is your filename.

Creating Pages
This workshop will use FrontPage to create most of the ASP pages done during the exercises.
Before you begin you will need to create a FrontPage web on the X:\ drive. To do this follow
these directions:

1. Open Internet Explorer.
2. Go to http://cgweb.mlcpac.uscg.mil/citrix/citrix.htm.
3. Click the FrontPage link. DO NOT click FrontPage 2000.
4. A window will open for you to enter your username and password. Enter them and

click OK. FrontPage will open showing the Getting Started window.
5. Click Create a New FrontPage Web.
6. Click OK. The New FrontPage Web window will open.
7. In the list of templates click Empty Web.
8. Click the Change button.
9. Enter the path to your web. Your web will be saved on your X:\ drive. Use the path

given below, but insert your user name in place of username.
X:\username

10. Click OK.
11. Enter your username as the title for the web.
12. Click OK.
13. You will get a message stating the folder does not exist and would you like to create it.

Click Yes. Your web will be created.

You are now ready to begin crating ASP pages.

 66

Creating ASP Pages

Inserting script tags
ASP uses scripting delimiters <% script %> to denote when scripts start and stop. Commands
enclosed in the delimiters are primary script commands and are processed using the primary script
language. An example of how script delimiters are used is shown below.

<%
dim var mytime
mytime = date()
response.write mytime
%>

You can also use the standard script tags as shown below.

<script language =”VBScript” runat=”server”>

some script commands

</script>

There is a difference in how ASP process the script tag compared to the scripting delimiters. The
primary difference is that anything in the standard script tag is execute when the page loads,
regardless of where in the web page the script is located. The script tag is generally reserved for
functions and subroutines that are called from other scripts. You can also use the script tag to mix
scripting languages. For example if your primary scripting language is VBScript, you can use the
script tag to insert some JScript code in a page.

Scripting Languages
ASP pages can be written using either JScript or VBScript. JScript is Microsoft’s version of
Javascript and is essentially the same as Javascript. However, there are a few differences. If you
plan to use JScript you should consult Microsoft’s scripting web site for more information-
http://msdn.microsoft.com/scripting/default.htm?/scripting/jscript/techinfo/jsdocs.htm.

VBScript is much simpler than JScript and is easier to learn. This tutorial will use VBScript as the
default for creating ASP Pages. For information on VBScript see the IISHelp web site mentioned
in the previous section.

Section

2

 77

ASP Directives
ASP has two special script delimiters known as directives.

The Output directive provides an equivalent to the response.write statement (to be discussed
later), but is much shorter and easier to use. The output directive is only used when you want to
insert something directly into a page. It cannot be used within a script. An example is shown
below.

<%= time %>

Provides the same thing as:

<% Response.Write time %>

The Processing directive is used to set scripting language for a page and when used must be the
first line of your ASP page.

<%@ language = vbscript %>
<HTML>
<HEAD>

You do not have to set the scripting language in this way, but it is a good idea and will likely reduce
errors.

Mixing Scripts and HTML
Scripts used in ASP pages can be placed anywhere in a page, and most likely your pages will be
littered with pieces of script. In general it is a good idea put any functions or subroutines in the
<Head> of the page as well as any variable declarations for variables that will be used later in the
page.

In most cases you will need to put the script right in the middle of the HTML. When you do this
whatever the output of the script or directive is will be displayed whereever the script is located.
An examples is shown below.

<h1> Hello. The time is <%= time %></h1>

This script inserts the current time directly into the web page.

Exercise – Creating an ASP Page
In this exercise we will create an ASP page that will display a different greeting depending on the
time of day.

1. Open a new page in FrontPage.
2. Change to HTML view.
3. In the body of the page enter the following code:

<h2><%

 88

dim mytime
mytime = now
if hour(mytime) > 12 then
 Response.Write "Good afternoon"
else
 Response.Write "Good morning"
end if
%>, This is an introduction to ASP</h2>

4. Save the page as test.asp
5. Open Internet Explorer and open the page by entering the URL in the address bar.

The URL should be http://cgweb.tcpet.uscg.mil/practicewebs/username/test.asp
where username is your username.
NOTE: You may want to bookmark this page for easy access later on.

When you view the page, you should see the appropriate greeting.

Examining the Code
The script uses standard VBScript commands to display a custom greeting based on the time of
day. The script starts with the script delimiter tag <%. A variable was created that contains the
current time. An If…then statement is used to determine if the time of day is before 12 noon, if the
time is before noon “Good morning” is display, otherwise “Good afternoon” is displayed.

The script takes several lines to accomplish the custom greeting, but when the page is displayed,
only the text of the message is returned to the browser. So even though the script use several lines
in the code, only two words get sent to the browser. This script is an example of an inline script
that generates text in the browser window. Next we’ll create a script that changes an HTML tag.

Exercise – Using Scripts in Tags
This script will use a for…next loop to create several lines in a web page. Scripts used by ASP can
be spread through out a page with HTML between the script statements. This allows the script to
change or interact with the HTML easier than with client side scripts.

1. Return to FrontPage and add the blank line after the </h2> tag from the previous
exercise.

2. Type the script delimiter to start the script and press Enter to create a new line.
3. Enter the following text:

For i = 1 to 7 step 1
4. Enter the end script delimiter.
5. Enter the following html tag and script statements:

<font size =”<%= i %>”>This is font size <%= i %>

.

6. Press enter to create a new line and enter the following script:
<% next %>

7. Save the page and preview it in Internet Explorer.
When you are done your code should be similar to this:

 99

<% For I = 1 to 7 step 1
%>
<p><font size="<%= i %>">This is font size <%= i %>. <%
next %>

</p>

(FrontPage will insert the <P> and </P> tags when the page is saved.)

Examining the Code
This script uses a For...next loop to create a new line for each font size. The first statement starts
the For…next loop. An HTML tag that includes a piece of script code is inserted into the page.
We then include some text and the output directive for the variable i. We then close the For…next
loop.

With a For…next loop everything will be repeated for as many times as the loop repeats. In our
case, the loop repeats seven times. The result is that seven lines are outputted as HTML and the
font size is increased in every line.

The point of this exercise is to illustrate how you can spread a script out and include bits and
pieces of scripts throughout a web page. Remember that the server processes the script before
sending the web page to the browser, so all the pieces of code are treated separately from the
HTML. The browser only sees the HTML output of the script code.

Scripting Conventions
White Space
ASP ignores white space in scripts, but preserves white space in quotation marks. ASP also strips
white space between two or more output directives. Below are a few examples of how ASP deals
with white space. These example refer specifically to scripts written in VBScript.

Example 1- White space in quotes
<% fullname= “G eo r g e Wash in g ton” %>

Result: Spacing is preserved.

Example 2- White space between output directives
<% name =”George”
lastname=”Washington” %>
<%= name %> <%=lastname%>

Result: GeorgeWashington

If you want to have space between output directives you will need to include the special character
for blank space . This is an HTML character and is ignored by ASP. Below is an example.

 1010

<%=name%> <%=lastname%>

Result: George Washington

Example 3- White space in script commands
<% name=”George”
last = “Washington” %>

Result: All white space is ignored. The return between lines in required to separate
statements.

Case Sensitivity
VBScript is not case sensitive so you don’t have to worry about what should or should not be
capitalized in your statements. JScript, however, is case sensitive. This is another reason why
VBScript is easier to use than JScript. This training will not use case sensitive script commands.
For a reference on the case of script commands, please see the IIS Help web site at
http://cgeweb.tcpet.uscg.mil/iishelp.

Comments
Comments in scripts provide a way for the person writing the script to leave references to others
who might be editing the script at a later time. Virtually every scripting or programming language
provides a way to include comments and VBScript is not exception.

To include a comment just type a single quotation mark and your comment. Everything after the
quotation mark will be a comment. You can include comments on a line by themselves or at the
end of a statement. Just remember to put the single quotation mark at the point where you want
the comment to start. Below are some example of comments.

<%
for i = 1 to count step 1 ‘ this is a comment
‘that line started a for next loop
response.write “Hi”
Next %>

In both cases the comments will not cause any scripting errors. However, if you put a comment in
an output directive you will get an error. The following script would not work.

<%= name ‘output the name variable %>

 1111

ASP Objects

Introduction
Up to this point we have only done a couple of scripts that could have been done on the client
side and not have used ASP. The real power of ASP comes from the objects that you can
manipulate before the page gets sent to the browser. As mentioned earlier, ASP has six native
objects available for use. These objects are always available and can be called on at any time.
There are many other objects available, but they require additional coding to create an instance of
the object. For now we will stick to the native objects. In particular this section will introduce the
Response and Request objects.

The World Wide Web is driven entirely by the request/response paradigm. When you click a
hyperlink on a web page a request is sent to the server for that page. The server then sends back a
response. Hopefully the response is the page you requested, but occasionally the response may be
an error. ASP has objects for the information contained in the request and response for web
pages. The Request and Response objects correspond to HTTP request and responses for web
pages.

You have already used the Response object in your scripts with the Response.Write statement. This
statement essentially tells the server to send some information back as part of the response. The
exercises in this section will use both the Response and Request objects.

When you are done with this section you will have created a set of ASP pages that use the
Response and Request objects to process HTML forms.

Working with Objects
Objects in ASP work much the same as browser objects used by VBScript and JavaScript.
Objects are the things that you can manipulate or change and have specified properties, events,
and methods. (Properties describe the object and methods are the actions that can be taken on the
object.) In addition many ASP objects also have associated collections. The collections are like
subparts of the object that can be accessed.

ASP objects are referred to like browser objects. The object is stated followed by a period, then
the method or property. An example is shown below.

Section

3

 1212

Response.Write parameters

In this example the object is the Response object and the method is the Write method. The
parameters are what you would want to be written by the response object.

Setting and retrieving properties uses the same format.

Response Object
The Response object corresponds to the response that is sent from the server to the browser after
a request is made. Logically, it may more sense to talk about the response after talking about the
request, but since we’ve already be using the Response object we will start there.

Overview of Response Object
The response object has the following methods, properties and collections.

At this time we will not cover every collection, method, or property. Rather, we will use the Write
method in our exercises to output data as part of the response back to the browser. The Write
method is used to actually write text to the response that is sent to the browser. The text is written
to the web page at the point where the script is inserted.

Request Object
As mentioned earlier the Request object corresponds to the request sent by the browser for a
specific page. The Request object is used when you want to do something with the request for a
page. This includes processing the contents of a form or analyzing request headers.

Response Object

Collections:

Cookies

Methods:

AddHeader
AppedToLog
BinaryWrite
Clear
End
Flush
Redirect
Write

Properties:

Buffer
CacheControl
Charset
ContentType
Expires
ExpiresAsolute
IsClientConnected
PICS
Status

 1313

Request Object Overview
The Request object has the following collections, methods and properties:

In this tutorial we will further explore the Form collection. The other collections, methods, and
properties will not be covered in this tutorial. If you would like more information on them please
see http://help.activeserverpages.com/iishelp/iis/htm/asp/intr1orp.htm.

Request Object

Collections:

Cookies
ClientCertificate
Form
QueryString
ServerVariables

Methods:

BinaryRead

Properties:

TotalBytes

 1414

Creating a Form Handler
The remainder of this tutorial will walk you through the process of creating a set of ASP pages that
process the input from a form. These exercises will use the Response and Request objects. It is
important to note that the data from the form will not be stored anywhere once it is processed.
That will discussed in a later tutorial on using databases with ASP. These exercises will cover the
basics of what you will need to know in order to create more advanced ASP applications.

The concepts that will be covered in these exercises include:

q Creating forms in FrontPage
q Passing form data to an ASP page
q Passing data from one ASP page to another using hidden fields
q Using conditional statements
q Including files in ASP pages
q Outputting data to a web page

Project Overview
A sample of the project you will create can be found at
http://cgweb.tcpet.uscg.mil/webstuff/training/asptutorial/project1.asp. The first page of the
project contains a form that will start the data capture process. The data will then be passed to a
form processor which will display further information based on the initial data. The user is walked
through several pages that are used to collect various types of data. This project is based on the
idea of collecting information that will be stored in a database. Let’s take a look at what the
database would actually include.

Database Overview
Since we are using a database as our example let’s look at the data we want to capture:

q First name
q Last name
q Unit
q Classification (Enlisted, Officer, Civilian, Other)
q Rank (Enlisted and Officer only)
q Rate (Enlisted only)

Section

4

 1515

q Did they attend the Academy or OCS? (Officer only)
q Do they have a college degree?
q If so what kind? (Associate, Bachelor’s, Master’s, Doctoral)
q What school did they receive the degree from?
q How many years have they been in the Coast Guard? (enlisted and officers only)
q How long have they worked in their current job? (civilians and other)
As you can see by this list, several of the data fields depend on the classification of the respondent.
As a result we will need to create different pages to collect the necessary data based on the
classification.

Outline of ASP Pages
Based on the data we want to collect there will be four sets of pages used to collect data- Enlisted,
Officer, Civilian, and Other. However, to make it easier for the respondent we will have ASP
choose the correct set of questions to ask. Our pages will need to contain several conditional
statements to determine which set of pages a particular respondent should be using.

Additionally, we need to make sure the questions are sequenced properly. For example, we should
ask if they have a college degree before asking what kind of degree they have. Below is a flow
chart of how the pages will work.

The first place we need to start is with the Start Page. Once that is done, we can work on each of
the four branches.

We should note again that we will not be actually writing data to a database in these exercises.
Other tutorials will discuss working with database. These exercises are only designed to show you
how to use the Response and Request objects.

Processor to
determine

classification

Enlisted
Questions

Officer
Questions

Civilian
Questions

Other
Questions

Start Page

 1616

Starting the Data Collection
Now that you have some idea of what the outcome of the page should be, it is time to start
creating the ASP pages that will handle the form data. The first thing we need to do is create a
page to capture the initial data that is common among the four classifications. This page will
actually be a regular HTML page with a form.

About Forms
Names and Values
Many of the ASP applications you create will use forms of some kind. The keys to creating forms
that ASP can use effectively are the Name and Value attributes. When the form data is passed to
an ASP page the data is organized according to the Name of the field.

Also, when you refer to form elements in a script you must refer to them by name. VBScript and
ASP treat each form field as a separate object that is identified by name. When you use radio
buttons and checkboxes you are actually creating a collection of fields with the same name. Only
the value of the radio button or checkboxes that are selected is sent as form data.

The bottom line is that you must make sure you give each form element a unique name.

Action and Method
Another Key aspect to forms is the action. The action is what happens to the form data when
the Submit button is clicked. The Submit button actually sends an HTTP request to the server
that includes all the data from the form. All the data is given to whatever resource is identified by
the action. In our case we will identify an ASP page as the action. What will actually happen is
that the data will get sent to an ASP page the will act on the data.

The method is how the data is sent. There are only two types of methods- get and post. Each
method sends the form data to the server differently, but the end result is usually about the same.
There are some technical differences, but we don’t need to discuss at this time. For our purposes
the post method must be used. In general with ASP you should use the post method, unless you
have a specific need to use get.

Exercise- Creating the Start Page
This exercise will walk you through the process of creating a form in FrontPage and editing the
attributes of the form elements. These same techniques will be used in all future exercises.

1. Create a new page in FrontPage Explorer.
2. Name the page startpage.asp.
3. Enter the text Personnel Data Collection at the top of the page and make it a

heading 2.
4. Press Return to create another line.

 1717

5. From the View menu select Forms Toolbar. This will display the Forms Toolbar
as one of your toolbars. This toolbar will be used extensively during the following
exercises.

6. In the Forms Toolbar, click the One-Line Text Box button. This will start a form
by adding a text box, submit button, and reset button to the page.

7. Place the cursor in front of the Submit button and press Return. This will add a
blank line after the text box.

8. Place the cursor in front of the text box and type First Name: .
9. Insert a line break after the text box.
10. Type Last Name:
11. Insert another One-Line Text Box.
12. Insert a line break after the text box you just created
13. Type Unit: and insert another text box followed by a line break. You should now

have three text boxes on the page, each respectively labeled First Name, Last Name,
and Unit.

14. Right-click the text box next to First Name. A pop-up menu will appear.
15. Select Form Field Properties. The Text Box Properties window will open as

shown below.

16. In the Name field type first.
17. Click OK. The window will close.
18. Repeat steps 13-16 for Last Name and Unit text boxes. Use the following values for

the Names:
Last Name = last
Unit = unit

19. In the line below the Unit text box, insert a Radio Button using the Forms Toolbar.
20. Next to the radio button type Enlisted and insert a line break.
21. Right-click the radio button.
22. From the pop-up menu select Form Field Properties. The Form Field Properties

window will open.
23. In the Group Name field enter nclass.

 1818

24. In the Value field enter enlisted.
25. Set the Initial State to Not selected.
26. Click OK to close the window.
27. Repeat steps 18-24 to create radio buttons with the following values:

Officer
Civilian
Other
NOTE: All radio buttons must have the Group Name nclass

28. Save the page.
When you are done your HTML source should look similar to this:

<html>
<head>
<title>Personnel Data Collection</title>
<meta name="GENERATOR" content="Microsoft FrontPage 3.0">
</head>
<body>
<h2>Personnel Data Collection</h2>
<p> </p>
<form method="POST" action="--WEBBOT-SELF--">
 <!--webbot bot="SaveResults" U-File="_private/form_results.txt" S-
Format="TEXT/CSV"
 S-Label-Fields="TRUE" --><p>First Name: <input type="text"
name="first" size="20">

 Last Name: <input type="text" name="last" size="20">

 Unit: <input type="text" name="unit" size="20">

 <input type="radio" value="enlisted" name="nclass">Enlisted

 <input type="radio" name="nclass" value="Officer">Officer

 <input type="radio" name="nclass" value="civilian">Civilian

 <input type="radio" name="nclass" value="other">Other</p>
 <p><input type="submit" value="Submit" name="B1"><input
type="reset" value="Reset"
 name="B2"></p>
</form>
</body>
</html>

 1919

Exercise – Setting the Action
In this exercise we will set the action of the form.

1. Right click anywhere in the form.
2. From the pop-up menu select Form Properties. The Form Properties window will

open as shown below.

3. Select Send to other.
4. Click the Options button. The Options for Custom Handler window will open as

shown below.

5. In the Action field enter process.asp.
6. Click OK to close the window.
7. Click OK to close the Form Properties window.
8. Save the page.

In HTML view the form tag should be the same as below.

<form method="POST" action="process.asp">

 2020

You have now completed the start page for our data collection. The remainder of the page will be
ASP pages that process form data. The next step is to create the process.asp page.

Creating the Initial Form Handler
Now that we have a form, we need to create the form handler to deal with the data. In the
previous exercise we specified the action of the form to be process.asp so our handler must be
named process.asp. This ASP page will look at the data and determine the classification of the
respondent. You may recall creating the radio button group named nclass. This will be the key
field for our data processor. Additionally will convert the other field data into hidden fields so
they can be passed to the next page. An easy way to pass data to another page is to include it in
the current page.

Including Files
You can tell ASP to include another page within the current page by using the include statement.
There are many situations where this is useful. In our case we will create four separate pages, one
for each of classification. So when process.asp determines the classification we will simply
include the correct form in the page.

The include file statement is not actually part of the script and uses the following syntax:

<!-- #include file=”filename”-->

Exercise – Creating process.asp
Follow these steps to create the processor page. The exercise will use the select case statement to
determine the classification. After the exercise the scripts will be explained.

1. Create a new page in FrontPage Editor.
2. Go to HTML view.
3. Just after the <head> tag enter the following script:

<%dim first
dim last
dim unit
dim nclass
first = request.form("first")
last = request.form("last")
unit = request.form("unit")
nclass = request.form("nclass")%>

4. Change the title to process.asp.
5. After the <body> tag enter the following script:

<% Select case nclass
case "officer" %>
<!-- #include file="officerform.asp" -->
<% case "other" %>
<!-- #include file="otherform.asp" -->

 2121

<% case "civilian" %>
<!-- #include file="civilianform.asp" -->
 <% case "enlisted" %>
<!-- #include file="enlistedform.asp" -->
 <% end select %>

6. Save the page. FrontPage may add line breaks to your scripts, but they will still work.
When you are done your page should look similar to this:

<html>
<head><% dim first
 dim last
 dim unit
 dim nclass
 first = request.form("first")
 last = request.form("last")
 unit = request.form("unit")
 nclass = request.form("nclass")%>
<title>process.asp</title>
</head>
<body>
<% Select case nclass
 case "officer"
 %> <!-- #include file="officerform.asp" --> <% case "other"
%> <!-- #include file="otherform.asp" --> <% case "civilian"
%> <!-- #include file="civilianform.asp" --> <% case "enlisted"
%> <!-- #include file="enlistedform.asp" --> <% end select
%> </p>
</body>
</html>

About the Code
The one thing you may have noticed about the scripts in this page is that they are spread out with
HTML tags between script statements. That is common in ASP pages. Just remember that ASP
processes the scripts before sending the page back to the browser.

The scripts start off in a familiar fashion by declaring variables and assigning them values. The
values, however, are special in that they use the Request object to determine the actual value. Let’s
take a look at the actual statement.

Request.Form(“fieldname”)

This statement calls on the Request object and then Forms collection and finally uses the actual
form field name. What this statement does is retrieve the value of the specified field from the
request that was sent to the server. In our script we took the value and assigned it to a variable.
This statement is used often in ASP pages..

The next thing that may have been new was the use of the select case conditional statement to
determine the classification. Select Case is like using multiple If…Then statements. The logic is
pretty simple. You start by stating criteria for comparison, in our case the variable nclass. Then
you specify cases that will be executed if the criteria matches. In our script we set four cases, one

 2222

for each classification. So if the variable nclass equals one of the four case statements the
corresponding code will be executed.

Let’s take a look at the just the first case as an example. First the criteria statement is made:

Select case nclass

This tells VBScript to use the value of the nclass variable as the match criteria. Next we specify
the cases. The first case was:

Case “officer”

This is like saying “if nclass = ‘officer’”. If nclass did equal “officer” then whatever statements
follow on the next line would be executed. ASP executes any script code and sends back any
HTML until it comes across the next case statement.

When we are done with all the case statements we must end the select case as follows:

End select

Our script told ASP to include a file when the case matched the criteria. Only the statements of
the matching case are executed. If none of the cases match the criteria, nothing happens.
Additionally, only the HTML of the selected case will be sent to the browser. The HTML
statements in the other cases are ignored.

Now that we have told ASP to include a file, we must create the files. If the all files do not exist
we will get errors when the scripts execute.

Exercise – Creating the Included Files
For this exercise we will create the enlistedform.asp file that will be included in process.asp. The
page will collect more information on the respondent. It will also use hidden fields to pass form
data to the next page. Because this page is another form, we’ll start right off creating new form

1. Create a new page in FrontPage editor.
2. Create a form with the following text box fields:

Rate – name = “rate”
Rank – name = “rank”
Years of service – name = “years”

3. Add a blank line below the last text box.
4. Enter the following text:

Do you have a college degree?
5. Add a blank line and create a radio button group named degree with the following

options:
Yes – value = “yes” Not selected
No – value = “no” Not selected

 2323

6. Set the form action to enlistedprocess.asp.
7. Save the page as enlistedform.asp.

When you are done your page should look similar to the following example in Normal view.

Exercise- Adding Hidden Fields
Follow these steps to add the hidden fields to the form. These fields will be used to pass data to
the next ASP page.

1. Right-click the form.
2. From the pop-up menu select Form Properties. The Form Properties window will

open.
3. Click the Advanced button. The Advanced Form Properties window will open, as

shown below.

 2424

4. Click the Add button. The Name/Value pair window will open.
5. In the Name field enter first.
6. In the Value field enter <%=first %>.
7. Click OK.
8. Repeat steps 4-7 using the following Name/value pairs:

Name: last Value: <%=last%>
Name: nclass Value: <%=nclass%>
Name: unit Value: <%=unit%>

9. Click OK to close the Advanced Form Properties.
10. Click OK to close the Form Properties window.
11. Save the page.

For a complete listing of the page source see Appendix A.

Exercise – Copying enlistedform.asp
In order for process.asp to work correctly all the files in from all for cases of the select case
statement must exist. Follow these steps to create copies of enlistedform.asp.

1. In FrontPage Explorer right click enlistedform.asp.
2. In the pop-up menu select Copy.
3. Press Ctrl+V three times to paste three copy of the page.
4. Rename one copy officerform.asp.
5. Rename one copy civilianform.asp.
6. Rename one copy otherform.asp.

You should now have a form page for each classification, although they are all identical forms.

Practice – officerform.asp
To practice the techniques used to create the enlistedform.asp you will create the officerform.asp
page. Fortunately much of the work has already been done since you already copied
enlistedform.asp.

1. Open officerform.asp.
2. Delete the label and text box for Rate.
3. Change the action for the form to officerprocess.asp.
4. Change the text above the radio button group to the following:

Please select one of the following:

5. Change the radio button group to include the following options:
I attended the Coast Guard Academy. value = “academy”

 2525

I attended Officer Candidate School. value = “ocs”
NOTE: Leave the group name as degree

6. Change the title to officerform.asp.
7. Save the page.

When you are done you should have the officerform.asp page completed. For a complete listing
of the page see Appendix A.

Testing Pages
So far we have not tested any of our pages. At this point we can’t fully test the pages because they
will return errors. One thing about ASP applications is that you often have to create numerous
pages before testing anything. Often the pages require other pages to work or depend on data
passed from one page to the next. At this time all you can test is the start page form. Before we
can test our pages we need to create a few more pages.

The next page we will create will take the contents of the enlistedform.asp and display another
form based on whether or not the respondent has a degree. We will use an if…then statement to
determine which form questions to display.

Exercise – Creating enlistedprocess.asp
Follow these steps to create the enlistedprocess.asp page:

1. In FrontPage Editor create a new page.
2. Switch to HTML view
3. In the <head> of the page declare the following variables in a script and assign their

value as the their corresponding form field (an example is provided below):
degree
rate
rank
first
last
nclass
unit
years
Example: dim degree
 degree = request.form(“degree”)

4. Switch to Normal view.
5. Add a radio button group named dgrtype to the page with the following options:

Associate’s – value = “associate”
Bachelor’s – value = “bachelor”
Master’s – value = “master”
Doctoral – value = “doctoral”

6. Place the cursor before the first radio button and insert a line break.

 2626

7. In the blank line above the radio buttons type:
Please indicate your highest degree:

8. Add a paragraph break below the last radio button.
9. Add the following text:

From what school did you earn your highest degree?
10. Insert a blank line.
11. Insert a one-line text box with the name college.
12. Insert a paragraph break after the text box.
13. Add the following text:

Please select one of the following regarding your career plans:
14. Create a radio button group named career with the following options:

I plan on staying in the Coast Guard until I am eligible to
retire. – value = “retire”
I plan to stay in the Coast Guard after my obligation is
fulfilled, but don't know for how long. – value = “stay”
I plan on leaving the Coast Guard upon completing my current
obligation. – value = “leave”
I don't know how long I'll stay in the Coast Guard. – value =
“unsure”

15. Set the form action to enlistedprocess2.asp.
16. Add the following hidden fields

Name Value
first <%= first %>
last <%= last %>
unit <%= unit %>
nclass <%= unit %>
rank <%= rank %>
rate <%= rate %>
years <%= years %>
degree <%= degree %>

17. Switch to HTML view.
18. Place the cursor just before the <p> tag before the text Please indicate your

highest degree:
19. Enter the following script:

<% if degree = “yes” then %>
20. Place the cursor just after the tag for the text box named college.
21. Add the following script:

<% else
response.write ("<input type=""hidden"" name=""college"" & _
value=""No Degree"">" & vbNewLine)
response.write ("<input type=""hidden"" name=""dgrtype"" & _
value=""No Degree"">" & vbNewLine)
end if %>

22. Save the page as enlistedprocess.asp.
When you are done your page should look like the example on the next page.

 2727

For a complete list of the code see Appendix A.

Practice
For practice, create officerform.asp and ask the following questions:

q If the respondent attended OCS, what school did they earn their Bachelor’s degree from?
The field name should be college.

q For all respondents, have they attended graduate school? Radio button group name
should be gradschool and the values should be Yes and No.

q Set the action to officerprocess2.asp.
Hint: This page is almost identical to the enlistedprocess.asp, so start by copying
enlistedprocess.asp. Don’t forget to delete any unnecessary hidden fields or variables.

For a complete listing of the code for officerprocess.asp, see Appendix A.

Displaying the Data
The final page in the sequence will take all the data that has been collected and display it in a web
page. If we were using a database, this page would write the data to the database. This page

 2828

should be relatively simple compared to the previous pages since it does not require any forms or
conditional statements. To make things a little easier we will copy enlistedprocess.asp to save
time writing the scripts.

Exercise – Displaying the data
Follow these steps to create a page to display the data.

1. In FrontPage Explorer right-click enlistedprocess.asp.
2. In the pop-up menu select Copy.
3. Press Ctrl+V to paste the copied page. The copied page will be pasted as

enlistedprocess_copy(1).asp.
4. Right-click enlistedprocess_copy(1).asp.
5. In the pop-up menu choose Rename.
6. Rename the page enlistedprocess2.asp.
7. Double click enlistedprocess2.asp to open it in FrontPage Editor.
8. Switch to HTM view.
9. Delete everything in the body of the page.
10. Add the following variables to the script in the head of the page and assign their values

as their corresponding field name
dgrtye
college
career

11. Switch to Normal view.
12. Enter the following text:

Form Results:
13. Insert a paragraph break.
14. Insert a table with two columns and eight rows
15. In the first column of the table enter the following text. Each line should be in its

own row:
Name:
Unit:
Rank:
Rate:
Years of Service:
Highest Degree:
College:
Career Plans:

16. Switch to HTML view.
17. Locate the table cell with the text Name:. In the following cell enter the following

script:
<%=first %> <%=last %>
This will output the first and last name in the cell next to Name:.

 2929

18. Using the output directive, enter the scripts to output all the script variables in the cell
next to their respective label. The degree variable will not be outputted.

19. Save the page.
For a complete listing of the code see Appendix A.

Practice
Create a page to output the Officer data. The file name should be officerprocess.asp. The page
will be almost identical to enlistedprocess2.asp.

For a listing of code for this page see Appendix A.

Finishing Up
Your ASP pages should now work. You should be able to go through the Enlisted branch and
have your result displayed in a web page.

You have now successfully created a set of ASP pages that can be used to collect data.
Additionally, you have successfully used the Response and Request objects to process the data
from forms.

 3030

Appendix A

enlistedform.asp
<head>
<title>Enlisted Form</title>
</head>

<body>

<form method="POST" action="enlistprocess.asp">
 <input type="hidden" name="first" value="<%=first%>"><input
type="hidden" name="last"
 value="<%=last%>"><input type="hidden" name="unit"
value="<%=unit%>"><input type="hidden"
 name="nclass" value="<%=nclass%>"><p>Rank <input type="text"
name="rank" size="20">

 Rate <input type="text" name="rate" size="20">

 Years of service: <input type="text" name="years" size="20"></p>
 <p>Do you have a college degree?

 <input type="radio" value="Yes" name="degree">Yes

 <input type="radio" name="degree" value="no">No</p>
 <p>Please select one of the following regarding your career plans:</p>
 <p><input type="radio" name="career" value="retire">I plan on staying
in the Coast Guard
 until I am eligible to retire.

 <input type="radio" name="career" value="stay">I plan to stay in the
Coast Guard after my
 obligation is fulfilled, but don't know for how long.

 <input type="radio" name="career" value="leave">I plan on leaving the
Coast Guard upon
 completing my current obligation.

 <input type="radio" name="career" value="unsure">I don't know how long
I'll stay in the
 Coast Guard.</p>
 <p><input type="submit" value="Submit" name="B1"><input type="reset"
value="Reset"
 name="B2"></p>
</form>
</body>
</html>

 3131

officerform.asp
<html>

<head>
<meta name="GENERATOR" content="Microsoft FrontPage 3.0">
<title>officerform.asp</title>
</head>

<body>

<form method="POST" action="officerprocess.asp">
 <input type="hidden" name="nclass" value="<%=nclass %>"><input type="hidden"
name="first"
 value="<%= first %>"><input type="hidden" name="last" value="<%=last
%>"><input
 type="hidden" name="unit" value="<%= unit %>"><p>Rank: <input type="text"
name="rank"
 size="20">

 Years of Service: <input type="text" name="years" size="20"></p>
 <p>Please select one of the following:

 <input type="radio" value="academy" name="degree">I attend the Coast Guard
Academy

 <input type="radio" name="degree" value="ocs">I went to Officer Candidate
School</p>
 <p><input type="submit" value="Submit" name="B1"><input type="reset"
value="Reset"
 name="B2"></p>
</form>
</body>
</html>

 3232

enlistedprocessor.asp
<html>
<head>
<title>Enlisted Processor</title>
<% dim degree
 dim rate
 dim rank
 dim years
 dim first
 dim last
 dim nclass
 dim unit
 degree= request.form("degree")
 rate = request.form("rate")
 rank = request.form("rank")
 years = request.form("years")
 first = request.form("first")
 last = request.form("last")
 nclass = request.form("nclass")
 unit = request.form("unit")
%>
</head>
<body>
<form method="POST" action="enlistedprocess2.asp"><input type="hidden"
name="first" value="<%=first%>"><input type="hidden" name="last"
value="<%=last%>"> <input type="hidden" name="unit" value="<%=unit%>"><input
type="hidden" name="nclass" value="<%=nclass%>"><input type="hidden"
name="rank" value="<%=rank%>"><input type="hidden" name="rate"
value="<%=rate%>"><input type="hidden" name="years" value="<%=years%>"><% if
degree = "Yes" then
%>
<p>Please indicate your highest degree:

 <input type="radio" value="Associate" name="dgrtype">Associates' Degree

 <input type="radio" name="dgrtype" value="Bachelor">Bachelors' Degree

 <input type="radio" name="dgrtype" value="Master">Master's Degree

 <input type="radio" name="dgrtype" value="Doctoral">Doctoral Degree</p>
 <p>From what institution did you receive your highest degree?

 <input type="text" name="college" size="40"></p>
<% else %>
<input type="hidden" name="degree" value="<%=degree%>"><input type="hidden"
name="dgrtyp" value="No degree"><input type="hidden" name="college"
 value="No degree">
<%end if %>
 <p>Please select one of the following regarding your career plans:</p>
 <p><input type="radio" name="career" value="retire">I plan on staying in the
Coast Guard until I am eligible to retire.

 <input type="radio" name="career" value="stay">I plan to stay in the Coast
Guard after my obligation is fulfilled, but don't know for how long.

 <input type="radio" name="career" value="leave">I plan on leaving the Coast
Guard upon completing my current obligation.

 <input type="radio" name="career" value="unsure">I don't know how long I'll
stay in the Coast Guard.</p>
 <p><input type="submit" value="Submit" name="B1"><input type="reset"
value="Reset" name="B2"></p>
</form>
</body>
</html>

 3333

officerprocess.asp
<html>

<head><% dim degree
dim rank
dim first
dim last
dim nclass
dim unit
first = request.form("first")
last = request.form("last")
unit = request.form("unit")
nclass = request.form("nclass")
rank = request.form("rank")
years = request.form("years")
degree = request.form("degree")
%>
<title>officerprocess.asp</title>
</head>
<body>

<form method="POST" action="officerprocess2.asp">
 <input type="hidden" name="nclass" value="<%= nclass %>"><input type="hidden"
name="degree"
 value="<%= degree %>"><input type="hidden" name="first" value="<%= first
%>"><input
 type="hidden" name="last" value="<%= last %>"><input type="hidden" name="rank"
 value="<%= rank %>"><input type="hidden" name="unit" value="<%= unit%>"><input
 type="hidden" name="years" value="<%= years %>"><% if degree = "ocs" then %>
<p> </p>
 <p>From what school did you recieve your degree?

 <input type="text" name="college" size="20"></p>
<% end if %>
 <p>Have you attended graduate school?

 <input type="radio" value="yes" name="gradschool">Yes

 <input type="radio" name="gradschool" value="no">No</p>
 <p>

 <input type="submit" value="Submit" name="B1"><input type="reset"
value="Reset" name="B2"></p>
</form>
</body>
</html>

 3434

enlistedprocess2.asp
<html>
<head>
<title>New Page </title>
<% dim degree
dim rate
dim rank
dim first
dim last
dim nclass
dim unit
dim dgrtype
dim college
dim career
first = request.form("first")
last = request.form("last")
unit = request.form("unit")
nclass = request.form("nclass")
rate = request.form("rate")
rank = request.form("rank")
years = request.form("years")
dgrtype = request.form("dgrtype")
college = request.form("college")
career = request.form("career")
%>
</head>
<body>
<p>Form Results:</p>
<table border="1" width="100%">
 <tr>
 <td width="50%">Name:</td>
 <td width="50%"><%= first %>
<p> <%=last%></td>
 </tr>
 <tr>
 <td width="50%">Unit:</td>
 <td width="50%"><%= unit %>
</td>
 </tr>
 <tr>
 <td width="50%">Rank:</td>
 <td width="50%"><%= rank %>
</td>
 </tr>
 <tr>
 <td width="50%">Rate:</td>
 <td width="50%"><%= rate %>
</td>
 </tr>
 <tr>
 <td width="50%">Years of Service:</td>
 <td width="50%"><%= years %>
</td>
 </tr>
 <tr>
 <td width="50%">Highest Degree:</td>
 <td width="50%"><%= dgrtype %>

 3535

</td>
 </tr>
 <tr>
 <td width="50%">College:</td>
 <td width="50%"><%= college %>
</td>
 </tr>
 <tr>
 <td width="50%">Career Plans:</td>
 <td width="50%"><%= career %>
</td>
 </tr>
</table>
</body>
</html>

 3636

officerprocess2.asp
<html>

<head><% dim degree
dim gradschool
dim rank
dim first
dim last
dim nclass
dim unit
dim college
first = request.form("first")
last = request.form("last")
unit = request.form("unit")
nclass = request.form("nclass")
degree = request.form("degree")
rank = request.form("rank")
years = request.form("years")
gradschool = request.form("gradschool")
college = request.form("college")
%>

<title>officerprocess2.asp</title>
</head>

<body>

<p>Form Results:</p>

<table border="1" width="100%">
 <tr>
 <td width="50%">Name:</td>
 <td width="50%"><%= first %>
<p> <%=last%></td>
 </tr>
 <tr>
 <td width="50%">Unit:</td>
 <td width="50%"><%= unit %>
</td>
 </tr>
 <tr>
 <td width="50%">Rank:</td>
 <td width="50%"><%= rank %>
</td>
 </tr>
 <tr>
 <td width="50%">Years of Service:</td>
 <td width="50%"><%= years %>
</td>
 </tr>
 <tr>
 <td width="50%">Attended:</td>
 <td width="50%"><%= degree %>
</td>
 </tr>
 <tr>
 <td width="50%">College:</td>

 3737

 <td width="50%"><%= college %>
</td>
 </tr>
 <tr>
 <td width="50%">Graduate school</td>
 <td width="50%"><%= gradschool %>
</td>
 </tr>
</table>
</body>
</html>

 3838

Appendix B

ASP Object Reference
Application Object

Collections Methods Events
Contents
StaticObjects

Lock
Unlock

Application_OnStart
Application_OnEnd

ObjectContext Object

Methods Events
SetAbort
SetComplete

OnTransactionAbort
OnTransactionCommit

Request Object

Collections Properties Methods
ClientCertificate
Cookies
Form
QueryString
ServerVariables

TotalBytes

BinaryRead

Response Object

Collections Properties Methods
Cookies Buffer

CacheControl
Charset
ContentType
Expires
ExpiresAsolute
IsClientConnected
PICS
Status

AddHeader
AppedToLog
BinaryWrite
Clear
End
Flush
Redirect
Write

 3939

Server Object

Properties Methods
ScriptTimeout CreateObject

HTMLEncode
MapPath
URLEncode

Session Object

Collections Properties Methods Events
Contents
StaticObjects

CodePage
LCID
SessionID
Timeout

Abandon Session_OnStart
Session_OnEnd

